Atlantic Richfield Company

Atlantic Richfield Company

4 Centerpointe Drive, 4-435 La Palma, CA 90623 Direct: (714) 228-6770

April 3, 2015

Mr. Steven Way
On-Scene Coordinator
Emergency Response Program (8EPR-SA)
US EPA Region 8
1595 Wynkoop Street
Denver, CO 80202-1129

Delivered via e-mail

Subject: March 2015 Monthly Progress Report Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU01, Rico, Colorado

Dear Mr. Way,

This progress report describes activities conducted during the month of March, 2015 at the Rico-Argentine Mine Site (site) and activities anticipated to occur during the upcoming month. These activities are organized by task as identified in the Removal Action Work Plan. This progress report is being submitted in accordance with Paragraph 35.a of the Unilateral Administrative Order for Removal Action (the "UAO"), dated March 17, 2011 (effective March 23, 2011).

ACTIVITIES FOR MARCH

This section describes significant developments during the preceding period including actions performed and any problems encountered during this reporting period. A summary of the St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study system performance is provided as an attachment.

Site-Wide Activities

- Collected snow pit information for site avalanche hazard forecasting to facilitate safe winter access.
- Maintained winter access routes for winter sampling and monitoring activities.
- Monitored site for major security and functionality breaches.
- Continued work with the US Forest Service in support of the Small Tracts Act (STA) acquisition
 parcels in the North St. Louis Ponds area. Also submitted the final archeological survey for the
 STA application parcels to the Forest Service.
- Submitted a request for UAO schedule modifications on March 3, 2015.

Task A – Pre-Design and Ongoing Site Monitoring

- Performed additional evaluation of potential improvements to surface water flow data gathering and telemetry. Continued working with Town of Rico on the application for an antenna permit.
- Collected data from pressure transducers at DR-3, DR-6, and AT-2. Collected manual flow measurements from DR-3 and DR-6. Replaced batteries in pressure transducer at DR-6.
- Inspected the St. Louis Ponds System, pond water levels, free-board, and condition of outlet pipes and overflow spillways. The pond network appears to be flowing well and in good condition
- Calibrated and serviced data loggers and transducers.

Task B - Management of Precipitation Solids in the Upper Settling Ponds

- Routed the St. Louis Tunnel discharge to Pond 18 during the month of March 2015.
- Continued planning for removal of remaining mining/mineral processing by-products from Upper Ponds.

Task C – Design and Construction of a Solids Repository

- Attended a public hearing before the Dolores County Board of County Commissioners (BOCC) on March 16, 2015 in Dove Creek, CO addressing the Solids Repository Land Use Application and Engineering Design and Operations Plan (EDOP). The BOCC voted unanimously to approve the Land Use Application and issue a Certificate of Designation (CD) for the Solids Repository. The signed agreement and CD was received on March 25, 2015. A notice of approval was submitted to the Dove Creek Press for publication on April 2, 2015.
- Continued planning for re-mobilization and completion of repository construction during the 2015 field season.
- Continued work for interim management of mining/mineral processing by-products until final disposal in the Phase 1 Solids Repository.
- Submitted status design for reconfiguration of remaining Interim Drying Facility (IDF) and interim
 use of Pond 13 for 2015 solids management for internal review.
- Submitted a cost estimate for closure and post-closure care to the CDPHE for review and approval on March 10, 2015.

Task D - Hydraulic Control Measures for the Collapsed Area of St. Louis Tunnel Adit

- Submitted (for internal review) Stage 2 60% Drawings for the St. Louis Tunnel hydraulic controls system.
- Monitored water levels in the tunnel at AT-2 using the data logger.
- Downloaded flow measurement data from pressure transducer at AT-2.
- Identified an issue with AT-2 in which a small avalanche in the terrain trap dislodged the conduit
 housing of the pressure transducer cable and subsequently pulled the transducer out of the
 water. The transducer was replaced and recalibrated and transitory repairs to the conduit were
 performed.

Task E - Source Water Investigations and Controls

• Continued Blaine Tunnel water depth and flow monitoring behind the Blaine Coffer Dam at the Blaine Tunnel Flume.

Task F – Water Treatment System Analysis and Design

- Completed two sampling events during the month of March 2015 at the Demonstration Wetlands during the weeks of March 9-13 and March 23-27. The sampling events included the following activities:
 - Collected water samples, water quality parameters, and water level elevations at all 11 sampling and monitoring locations. Collected additional water quality parameters at 14 monitoring locations.
 - Conducted a hydrogen sulfide survey throughout the Demonstration Wetlands area.
 - Serviced, calibrated, and maintained hydrogen sulfide meters near the rock drain and the Horizontal Sub-Surface Flow (HSSF) Wetlands.
 - Recorded flowrate measurements from flow monitoring locations within the Demonstration Wetlands.
 - Downloaded data from thermocouples in the rock drain and the HSSF Wetlands.
- Completed Issued for Bid Design Drawings and Specifications of Enhanced Wetland Demonstration System. Began procurement process to select construction contractor.
- Completed hydrogen sulfide (H₂S) monitoring throughout the month and serviced H₂S monitors.

ACTIVITIES FOR UPCOMING MONTH

This section describes developments expected to occur during the upcoming reporting period, including a schedule of work to be performed, anticipated problems, and planned resolution of past or anticipated problems.

Site-Wide Activities

- Maintain winter access routes for sampling and monitoring of the Demonstration Wetland.
- Perform ongoing security observation of the site.
- Collect snow pit information for site avalanche hazard forecast, if needed.
- Prepare for site kick-off meeting and contractor's mobilization to the site currently scheduled for the week of April 20th (dependent on weather and site conditions).

Task A – Pre-Design and Ongoing Site Monitoring

- Inspect the St. Louis Ponds System, water levels, and free-board.
- Continue work on submittal and processing of the application for a telemetry antenna permit for the Rico office building.
- Download data from pressure transducers at DR-3, DR-6, and AT-2.

Task B – Management of Precipitation Solids in the Upper Settling Ponds

- Continue routing St. Louis Tunnel discharge to Pond 18.
- Continue planning for removal of all remaining mining/mineral processing by-products from Upper Ponds.

Task C – Design and Construction of a Solids Repository

- Notice of Approval for the Solids Repository by the BOCC will be published in a local newspaper.
- Continue planning for re-mobilization and completion of repository construction during the 2015 field season.
- Continue work for interim management of mining/mineral processing by-products until final disposal in the Phase 1 Solids Repository.
- Continue work on final design of a reconfigured IDF and improvements to Pond 13 for use in interim management of solids to be removed in 2015.

Task D - Hydraulic Control Measures for the Collapsed Area of St. Louis Tunnel Adit

- Continue work on design of Stage 2 hydraulic control measures.
- Monitor water levels in the tunnel at AT-2.

Task E – Source Water Investigations and Controls

• Continue Blaine Tunnel water depth and flow monitoring behind the Blaine Coffer Dam at the Blaine Tunnel Flume.

Task F – Water Treatment System Analysis and Design

- Continue scoping additional data needs as necessary related to treatment system alternatives.
- Select construction contractor for the Enhanced Wetland Demonstration System.
- Perform winter operations and sampling of the Demonstration Scale Wetlands twice per month, weather and site conditions permitting.

If you have any questions, please feel free to contact me at (951) 265-4277.

Sincerely,

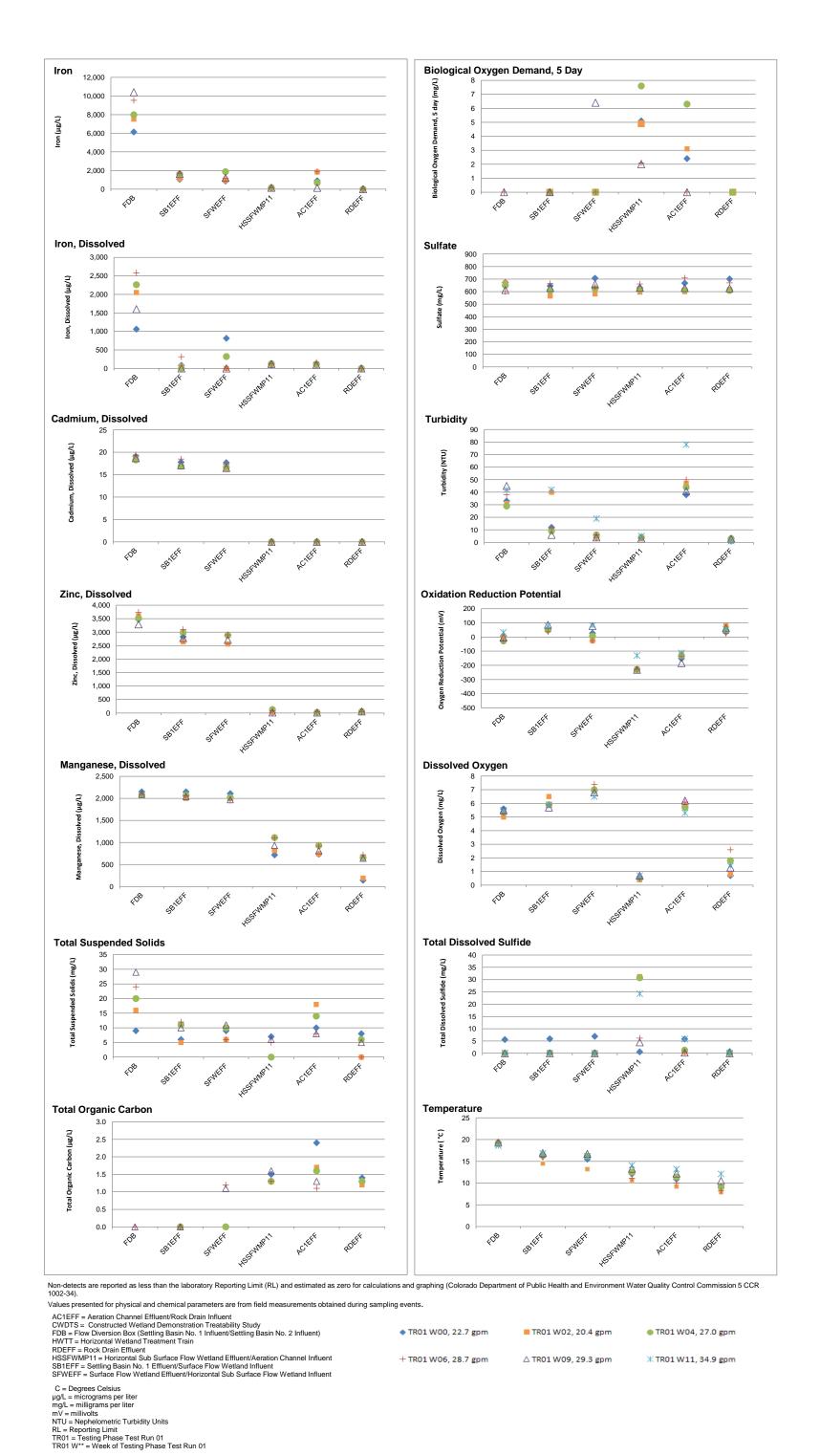
Anthony R. Brown Project Manager

Atlantic Richfield Company

anthrong R. Brown

cc: R. Halsey, Atlantic Richfield

- T. Moore, Atlantic Richfield
- B. Johnson, Atlantic Richfield
- R. Raftery, Esq., Atlantic Richfield
- C. Sanchez, Anderson Engineering
- D. Yadon, AECOM
- J. Christner, Weston Solutions
- S. Riese, EnSci
- A. Cohen, Esq., Davis Graham & Stubbs
- W. Duffy, Esq., Davis Graham & Stubbs
- A. Piggott, Esq., U.S. EPA
- D. McCarthy, Copper Environmental
- K. Sessions, AEEC
- C. Hixenbaugh, AEEC
- B. Florentin, AMEC


file: Atlantic Richfield Rico Archives, La Palma, CA AECOM Denver Project File

Attachment

Key Performance Indicators Figures

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

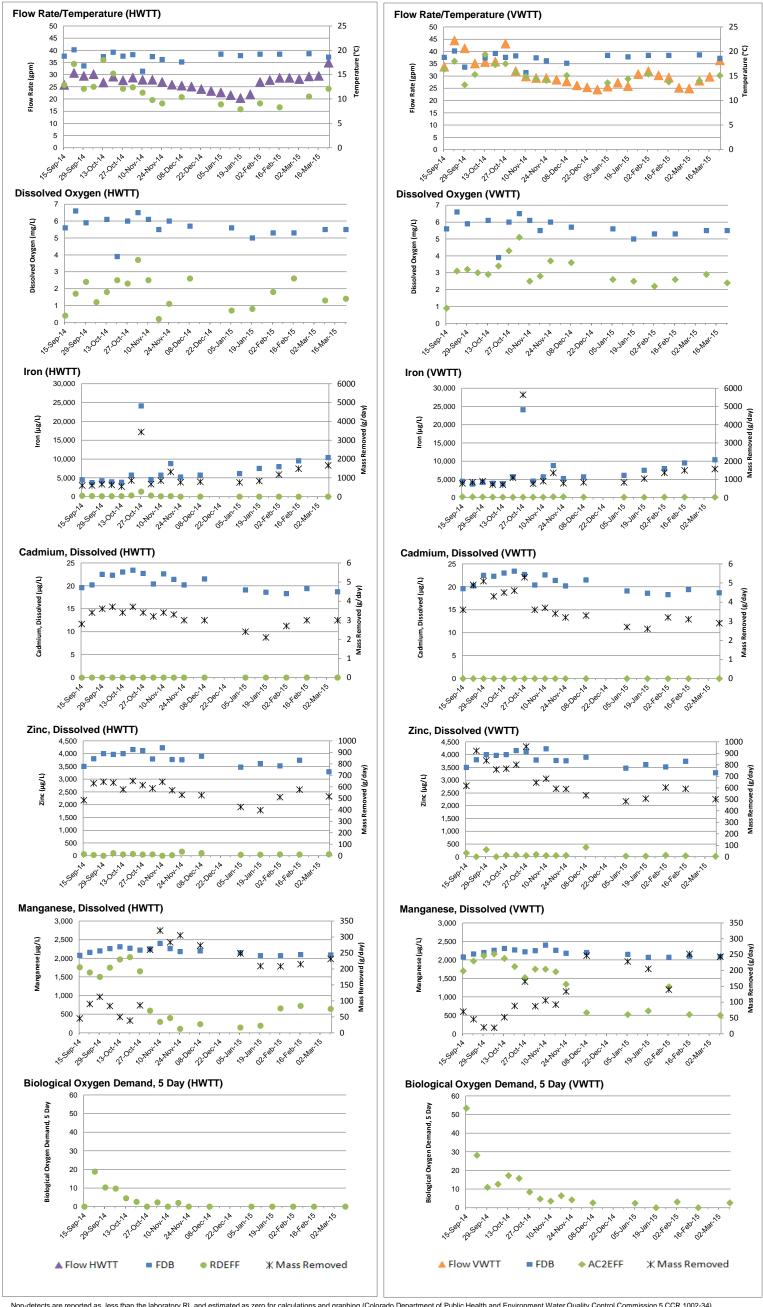
Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Non-detects are reported as less than the laboratory RL and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

C = Degrees Celsius

µg/L = micrograms per liter

mg/L = milligrams per liter


my = millivotts

NTU = Nephelometric Turbidity Units

RL = Reporting Limit

TR01 = Testing Phase Test Run 01

TR01 W** = Week of Testing Phase Test Run 01

Non-detects are reported as less than the laboratory RL and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

The Aeration Cascade in the VWTT train was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the

AC2EFF = Aeration Cascade Effluent
C = Degrees Celsius
µg/L = micrograms per liter
FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)
gpm = gallons per minute
g/day = grams per day
HWTT = Horizontal Wetland Treatment Train
mg/L = milligrams per liter
mV = millivolts
NTU = Nephelometric Turbidity Units
RDEFF = Rock Drain Effluent
RL = Reporting Limit
VWTT = Vertical Wetland Treatment Train

DRAWN BY: LPCjr LPCjr KS KS CAD FILE: Figure 4.dwg

SCALE: 1:40 SHEET: 01 OF 01

Key Performance Indicators Tables

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Table 1. Iron (µg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	4500	1330	1200	223	261	250	1250	266	246
С	W01	22-Sep-14	30.7	44.5	3740	1070	930	168	203	170	971	206	218
С	W02	29-Sep-14	29.5	41.3	4230	1640	1360	194	250	129	1440	216	210
С	W03	06-Oct-14	30.2	35.1	3940	1720	1540	142	156	134	937	171	165
С	W04	13-Oct-14	26.8	35.7	3820	892	900	146	138	144	1500	161	154
С	W05	20-Oct-14	29.2	35.9	5730	1260	1010	133	1010	326	1390	244	143
С	W06	27-Oct-14	27.7	43.2	24100	1630	1330	171	304	1340	R	157	137
С	W07	03-Nov-14	28.8	32.0	4550	1180	1130	126	118	297	902	175	153
С	W08	10-Nov-14	27.9	29.8	5720	1540	1380	137	115	99.6	1640	151	148
С	W09	17-Nov-14	27.9	29.2	8800	978	1190	218	2140	141	1670	253	260
С	W10	24-Nov-14	27.0	29.2	5230	1550	1270	135	712	<50	1850	236	245
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	5710	1490	1280	129	538	<50	1320	164	156
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	6130	1060	867	129	905	<50	1260	151	131
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	7510	1110	920	117	1830	<50	1460	116	109
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	7980	1600	1870	150	688	<50	1780	164	162
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	9530	1710	1190	136	1910	<50	1520	143	142
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	10400	1620	1210	146	140	<50	1480	148	138

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = horizontal treatment train average flow rate

Flow V = vertical treatment train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NS = not sampled

OU = operable unit

RDEFF = Rock Drain Effluent

R = rejected

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Testing Phase Test Run

μg/L = microgram per liter

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 2. Iron, Dissolved (µg/L)

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	772	56.4	<50	80.7	50.8	76.2	101	213	174
С	W01	22-Sep-14	30.7	44.5	723	<50	182	56	<50	<50	96.2	172	128
С	W02	29-Sep-14	29.5	41.3	1320	140	<50	74.1	<50	<50	166	189	147
С	W03	06-Oct-14	30.2	35.1	625	120	<50	79.8	<50	53.3	360	147	86.2
С	W04	13-Oct-14	26.8	35.7	339	58.2	<50	77	52.8	66.1	67	135	89.4
С	W05	20-Oct-14	29.2	35.9	575	96	<50	78.9	103	195	72.8	128	106
С	W06	27-Oct-14	27.7	43.2	1930	252	64.6	123	113	847	R	140	113
С	W07	03-Nov-14	28.8	32.0	483	113	59.9	122	80.5	148	66.4	143	106
С	80W	10-Nov-14	27.9	29.8	2290	329	67.6	126	64.4	79.8	147	134	90
С	W09	17-Nov-14	27.9	29.2	1140	152	54.6	101	79.2	111	154	215	188
С	W10	24-Nov-14	27.0	29.2	3480	167	73.4	85.4	168	<50	119	194	163
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	5510	1470	1360	130	454	<50	1330	167	161
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	1060	82.9	813	91.7	92	<50	<50	113	148
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	2050	60.4	<50	103	86.9	<50	<50	102	95.6
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27.0	32.0	2260	<50	320	126	115	<50	202	164	148
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	2580	314	<50	120	163	<50	97.9	141	124
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	1600	<50	<50	121	100	<50	<50	130	118

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = horizontal treatment train average flow rate

Flow V = vertical treatment train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NS = not sampled

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

 μ g/L = microgram per liter

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 3. Cadmium, Dissolved (µg/L)

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	19.6	18.9	18.4	<0.5	<0.5	<0.5	19.1	<0.5	<0.5
С	W01	22-Sep-14	30.7	44.5	20.2	19.4	19	<0.5	<0.5	<0.5	18.8	<0.5	<0.5
С	W02	29-Sep-14	29.5	41.3	22.5	21.2	20.4	<0.5	<0.5	<0.5	21.2	<0.5	<0.5
С	W03	06-Oct-14	30.2	35.1	22.3	21.5	21	<0.5	<0.5	<0.5	22.1	<0.5	<0.5
С	W04	13-Oct-14	26.8	35.7	23	21.9	20.7	<0.5	<0.5	<0.5	22.1	<0.5	<0.5
С	W05	20-Oct-14	29.2	35.9	23.4	23.6	23.6	0.6	<0.5	<0.5	24.1	<0.5	<0.5
С	W06	27-Oct-14	27.7	43.2	22.7	21.9	21.6	<0.5	<0.5	<0.5	R	<0.5	<0.5
С	W07	03-Nov-14	28.8	32.0	20.4	21.2	21.1	1.1	0.51	<0.5	21.6	<0.5	<0.5
С	W08	10-Nov-14	27.9	29.8	22.6	21.9	21.4	<0.5	<0.5	<0.5	22.1	<0.5	<0.5
С	W09	17-Nov-14	27.9	29.2	21.4	20	20	<0.5	<0.5	<0.5	20.7	<0.5	<0.5
С	W10	24-Nov-14	27.0	29.2	20.2	19	19.2	<0.5	<0.5	<0.5	19	<0.5	<0.5
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	21.5	20	19.7	1.1	1	<0.5	19.6	<0.5	<0.5
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	19.1	17.8	17.7	<0.5	<0.5	<0.5	17.9	<0.5	<0.5
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	18.6	16.8	16.3	<0.5	<0.5	<0.5	17.6	<0.5	<0.5
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	18.3	16.9	16.7	<0.5	<0.5	<0.5	17.2	<0.5	<0.5
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	19.4	18.5	17.4	<0.5	<0.5	<0.5	16.9	<0.5	<0.5
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	18.7	17.1	16.5	<0.5	<0.5	<0.5	16.9	<0.5	<0.5

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = horizontal treatment train average flow rate

Flow V = vertical treatment train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NS = not sampled

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

μg/L = microgram per liter

VWTT = Vertical Wetland Treatment Train

¹The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

²The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 4. Zinc, Dissolved (µg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	3500	3140	3020	60.6	<10	62.5	3120	52 J	148
С	W01	22-Sep-14	30.7	44.5	3800 J	3240	3210	<10	27	30	3100	12.8	<10
С	W02	29-Sep-14	29.5	41.3	4000	3520	3320	30.3	<10	<10	3450 J	10.8	279
С	W03	06-Oct-14	30.2	35.1	3970	3570	3440	115	37.9	102	3530	32.7	<10
С	W04	13-Oct-14	26.8	35.7	4000	3360	3060	90.4	60.5	53	3650	76.2	59.4
С	W05	20-Oct-14	29.2	35.9	4160	3610	3560	156	70	69.3	3840	56.4	65.7
С	W06	27-Oct-14	27.7	43.2	4120	3690	3530	79.9	47.8	47.9	R	<10	46.9
С	W07	03-Nov-14	28.8	32.0	3790	3460	3340	391	190	54	3650	83.3	91.7
С	W08	10-Nov-14	27.9	29.8	4230	3740	3590	152	48.3	<10	3810	15.2	49.4
С	W09	17-Nov-14	27.9	29.2	3770	3260	3370	74	44.1	23.5	3500	50.5	48.8
С	W10	24-Nov-14	27.0	29.2	3760	3220	3170	105	168	159	3320	41.8	54.5
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	3900	3350	3350	503	439	106	3430	380	368
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	3470	2830	2900	21.5	15.3	38.3	3010 J	26.9	26.1
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	3610	2640	2560	20.7	11.1	42.7	3100	33.5	25.3
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	3520	2980	2880	129	20.5	52.9	3120	89.4	63.7
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	3740	3100	2900	84.8	38	48.5	3160	30.6	38.4
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	3290	2780	2710	19.1	16.6	57.1	2870 J	117	16.7

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = horizontal treatment train average flow rate

Flow V = vertical treatment train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

J = Laboratory flag indicating estimated value between the MDL and the laboratory RL.

MDL = method detection limit

NS = not sampled

OU = operable unit R = rejected

RDEFF = Rock Drain Effluent RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

μg/L = microgram per liter

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 5. Manganese, Dissolved (µg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Phase	Week	Week of	FLOW H ¹ (gpm)	FLOW V ^{1,2} (gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	2080	2100	2040 J	1730 J	1610	1760	2110	1690	1700
С	W01	22-Sep-14	30.7	44.5	2160 J	2100	2110	1860 J	1630	1620	2110	2000	1970
С	W02	29-Sep-14	29.5	41.3	2200	2200	2100	1800	1660	1500	2140 J	2170 J	2110
С	W03	06-Oct-14	30.2	35.1	2260	2250	2230	1930	1840	1750 J	2280	2220 J	2160
С	W04	13-Oct-14	26.8	35.7	2310 B	2310 B	2180 B	2000 B	1950 B	1970 B	2310 B	2030 B	2040 B
С	W05	20-Oct-14	29.2	35.9	2270	2440	2370	2000 J	1990	2030	2360	1780	1820
С	W06	27-Oct-14	27.7	43.2	2220	2300	2240	1960	1950	1650 J	R	1470	1520
С	W07	03-Nov-14	28.8	32.0	2250	2260	2270	1490	1540	594 J	2270	1750	1750
С	W08	10-Nov-14	27.9	29.8	2400	2430	2390	1080	1280	293 J	2300 J	1690 J	1750
С	W09	17-Nov-14	27.9	29.2	2260	2240	2340	904 J	1020	396 J	2220	1670	1680
С	W10	24-Nov-14	27.0	29.2	2180	2170	2160	695 J	843	106 J	2110	1410	1340
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	2200	2220	2200	686	825	232	2200	568	571
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	2150	2150	2110	717	734	141	2130 J	519	520
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	2070	2000	2020	819 J	737	190	2130	592 J	618
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	2070	2070	2020	1110	931	654	2070	1290	1270
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	2100	2060	1960	1100	917	721	2050	525	521
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	2090	2040	1970	930 J	812	641	1840 J	489	500

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

B = Laboratory flag indicating blank contamination

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = horizontal treatment train average flow rate

Flow V = vertical treatment train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

J = Laboratory flag indicating estimated value between the MDL and the laboratory RL.

MDL = method detection limit

NS = not sampled

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

μg/L = microgram per liter

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 6. Total Suspended Solids (mg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Phase	Week	Week of	FLOW H ¹ (gpm)	FLOW V ^{1,2} (gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	6	<5	<5	<5	<5	<5	<5	<5	<5
С	W01	22-Sep-14	30.7	44.5	6	12	<5	<5	6	<5	<5	<5	<5
С	W02	29-Sep-14	29.5	41.3	8	<5	6	<5	10	<5	9	<5	<5
С	W03	06-Oct-14	30.2	35.1	<5	<5	6	<5	<5	<5	<5	<5	<5
С	W04	13-Oct-14	26.8	35.7	11	10	14	<5	5	<5	15	<5	<5
С	W05	20-Oct-14	29.2	35.9	17	7	9	<5	22	<5	12	6	12
С	W06	27-Oct-14	27.7	43.2	<5	7	<5	<5	<5	5	R	<5	<5
С	W07	03-Nov-14	28.8	32.0	11	6	8	<5	<5	<5	<5	<5	<5
С	W08	10-Nov-14	27.9	29.8	<5	7	6	<5	<5	<5	11	5	10
С	W09	17-Nov-14	27.9	29.2	12	13	15	80	30	11	15	<5	14
С	W10	24-Nov-14	27.0	29.2	42	10	7	<5	15	<5	7	6	14
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	14	9	<5	<5	<5	<5	<5	<5	<5
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	9	6	9	7	10	8	<5	7	8
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	16	5	6	<5	18	<5	6	<5	<5
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	20	11	10	<5	14	6	<5	<5	<5
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	24	12	6	5	8	<5	6	<5	<5
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	29	10	11	6	8	5	<5	9	7

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

mg/L = milligram per liter NS = not sampled

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 7. Total Organic Carbon (mg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	NR	<1	<1	12.7	24.9	21.5	<1	38	31.6
С	W01	22-Sep-14	30.7	44.5	NR	1.3	<1	6.8	11.7	12.5	1	21	19.7
С	W02	29-Sep-14	29.5	41.3	NR	<1	<1	5.9	9	9.1	1.3	10.6	9.2
С	W03	06-Oct-14	30.2	35.1	NR	<1	<1	4.2	7.4	7.6	<1	9.2	7.8
С	W04	13-Oct-14	26.8	35.7	NR	<1	<1	3.2	4.9	5.2	1.1	6.2 J	5.3
С	W05	20-Oct-14	29.2	35.9	NR	<1	<1	3	4.2	4.4	<1	4.6	4.4
С	W06	27-Oct-14	27.7	43.2	NR	<1	<1	2.9	4	6.5	R	3.5	3.3
С	W07	03-Nov-14	28.8	32.0	NR	<1	<1	1.6	2.6	2.5	<1	2.6	2.6
С	W08	10-Nov-14	27.9	29.8	NR	<1	<1	1.6	2.5	2.1	<1	2.4	2.4
С	W09	17-Nov-14	27.9	29.2	NR	<1	<1	1.7	2.5	2	<1	2.5	2.4
С	W10	24-Nov-14	27.0	29.2	NR	<1	<1	1.3	2.2	1.5	<1	2.3	2.5
С	W11	01-Dec-14	25.9	28.5	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	NR	<1	1.8	1.8	2.8	1.6	<1	2	1.9
С	W13	15-Dec-14	25.1	26.2	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	NR	<1	<1	1.5	2.4	1.4 J	<1	1.9	2.1
TR01	W01	12-Jan-15	21.6	27.3	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	NR	<1	<1	1.3	1.7	1.2 J	<1	1.6	1.7
TR01	W03	26-Jan-15	21.9	30.8	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	NR	<1	<1	1.3	1.6	1.3	<1	1.9	2.6
TR01	W05	09-Feb-15	27.8	30.3	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	NR	<1	<1	1.2	1.3	1.1	<1	1.1	1.2
TR01	W07	23-Feb-15	28.7	25.2	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	NR	<1	<1	1.1	1.6	1.3	<1	1.3	1.4

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

J = Laboratory flag indicating estimated value between the MDL and the laboratory RL.

MDL = method detection limit mg/L = milligram per liter

NR = not required

NS = not sampled

OU = operable unit

R = rejected RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 8. Biological Oxygen Demand, 5 day (mg/L)
Horizontal and Vertical Wetland Treatment Trains

To Izonial and ventical wealth Teather Teams

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Phase	Week	Week of	Analyte Name	Units	FLOW H ¹ (gpm)	FLOW V ^{1,2} (gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EF
С	W00	15-Sep-14	BOD, 5 day	mg/L	25.8	33.8	NR	<2	<2	29.3	R	R	<2	77.4	53.4
С	W01	22-Sep-14	BOD, 5 day	mg/L	30.7	44.5	NR	<2	<2	22.1	30.3	18.8	<2	29.3	28.1
С	W02	29-Sep-14	BOD, 5 day	mg/L	29.5	41.3	NR	<2	<2	9.4	23.8	10.3	<2	20.3	10.9
С	W03	06-Oct-14	BOD, 5 day	mg/L	30.2	35.1	NR	<2	<2	7.8	15.7	9.7	<2	20.1	12.6
С	W04	13-Oct-14	BOD, 5 day	mg/L	26.8	35.7	NR	<2	<2	2.8	7.6	4.5	<2	16.4	17.2
С	W05	20-Oct-14	BOD, 5 day	mg/L	29.2	35.9	NR	<2	<2	<2	3.5	2.6	<2	10.9	15.7
С	W06	27-Oct-14	BOD, 5 day	mg/L	27.7	43.2	NR	<2	<2	3.1	2	<2	<2	11.5	8.4
С	W07	03-Nov-14	BOD, 5 day	mg/L	28.8	32.0	NR	<2	<2	2	2.6	2.3	<2	8	4.7
С	W08	10-Nov-14	BOD, 5 day	mg/L	27.9	29.8	NR	<2	<2	2.1	2	<2	<2	9.7	3.5
С	W09	17-Nov-14	BOD, 5 day	mg/L	27.9	29.2	NR	<2	<2	2.9	<2	2	<2	9.6	6.4
С	W10	24-Nov-14	BOD, 5 day	mg/L	27.0	29.2	NR	<2	<2	3.2	4.2	<2	<2	7.8	4.2
С	W11	01-Dec-14	BOD, 5 day	mg/L	25.9	28.5	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	BOD, 5 day	mg/L	25.5	27.8	NR	<2	<2	5.1	3.8	<2	<2	6.5	2.6
С	W13	15-Dec-14	BOD, 5 day	mg/L	25.1	26.2	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	BOD, 5 day	mg/L	24.1	25.4	NR	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	BOD, 5 day	mg/L	23.3	24.5	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	BOD, 5 day	mg/L	22.7	25.7	NR	<2	<2	5.1	2.4	<2	<2	3.6	2.4
TR01	W01	12-Jan-15	BOD, 5 day	mg/L	21.6	27.3	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	BOD, 5 day	mg/L	20.4	25.9	NR	<2	<2	4.9	3.1	<2	<2	5.2	<2
TR01	W03	26-Jan-15	BOD, 5 day	mg/L	21.9	30.8	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	BOD, 5 day	mg/L	27	32	NR	<2	<2	7.6	6.3	<2	<2	5.3	3.1
TR01	W05	09-Feb-15	BOD, 5 day	mg/L	27.8	30.3	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	BOD, 5 day	mg/L	28.7	29.4	NR	<2	<2	<2	2.1	<2	<2	4.4	<2
TR01	W07	23-Feb-15	BOD, 5 day	mg/L	28.7	25.2	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	BOD, 5 day	mg/L	28.2	24.9	NR	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	BOD, 5 day	mg/L	29.3	28.1	NR	<2	<2	6.4	2	<2	<2	4.8	2.6

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-

34).
AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent) Flow H = Horizontal Treatment Train average flow rate
Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute
HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

mg/L = milligram per liter NR = not requrired

NS = not sampled

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 9. Sulfate (mg/L)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	595	579	575	603	551	571	571	497	523
С	W01	22-Sep-14	30.7	44.5	710	650	724	637	620	555 J	589	582	656
С	W02	29-Sep-14	29.5	41.3	574	615	612	605	587	565	613	573	580 J
С	W03	06-Oct-14	30.2	35.1	570	630	618	707	580	618	622	522	562
С	W04	13-Oct-14	26.8	35.7	632	637	647	660	655	648	644	615 J	612
С	W05	20-Oct-14	29.2	35.9	555	551	584	558	557	574	545	543	552
С	W06	27-Oct-14	27.7	43.2	629	614	596	625	637	673	R	602	606
С	W07	03-Nov-14	28.8	32.0	536	514	526	552	542	535	536	530	525
С	W08	10-Nov-14	27.9	29.8	616	623	640	617	644	815	627	646	657
С	W09	17-Nov-14	27.9	29.2	601	635	584	587 J	901	683	606	591	574
С	W10	24-Nov-14	27.0	29.2	638	662	636	685	749	680	654	674	638
С	W11	01-Dec-14	25.9	28.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	25.5	27.8	645	623	633	672	687	614	663	597	625
С	W13	15-Dec-14	25.1	26.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	24.1	25.4	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	23.3	24.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	22.7	25.7	673	646	707	631	668	701	652	648	645
TR01	W01	12-Jan-15	21.6	27.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	20.4	25.9	670	565	582	596	600	617	678	639	801 J
TR01	W03	26-Jan-15	21.9	30.8	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	27	32	650	608	623	617	612	609	583	652	653
TR01	W05	09-Feb-15	27.8	30.3	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	28.7	29.4	601	664	637	661	709	670	687	642	656
TR01	W07	23-Feb-15	28.7	25.2	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	28.2	24.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	29.3	28.1	613	629	658	631	629	626	703 J	639	594

NOTES:

Non-detects are reported as less than the laboratory Reporting Limit (RL) and estimated as zero for calculations and graphing (Colorado Department of Public Health and Environment Water Quality Control Commission 5 CCR 1002-34).

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

 $\ensuremath{\mathsf{J}}$ = Laboratory flag indicating estimated value between the MDL and the laboratory RL.

MDL = method detection limit

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 10. Turbidity (NTU)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	18	3	5	R	44	7	8	R	R
С	W01	22-Sep-14	30.7	44.5	18	7	4	11	49	13	4	3	13
С	W02	29-Sep-14	29.5	41.3	22	8	7	8	35	35	7	7	16
С	W03	06-Oct-14	30.2	35.1	NM	7	6	9	32	48	5	6	26
С	W04	13-Oct-14	26.8	35.7	31	8	7	14	56	47	12	7	35
С	W05	20-Oct-14	29.2	35.9	39	9	8	11	60	14	11	9	103
С	W06	27-Oct-14	27.7	43.2	38	9	6	7	33	14	5	5	38
С	W07	03-Nov-14	28.8	32.0	38	9	8	5	21	3	6	3	28
С	W08	10-Nov-14	27.9	29.8	31	5	6	2	25	0	4	5	19
С	W09	17-Nov-14	27.9	29.2	30	8	7	5	23	2	8	5	25
С	W10	24-Nov-14	27.0	29.2	46	59	17	8	43	1	7	17	146
С	W11	01-Dec-14	25.9	28.5	MM	NM	NM	NM	NM	NM	NM	NM	NM
С	W12	08-Dec-14	25.5	27.8	33	7	6	2	31	0	8	5	44
С	W13	15-Dec-14	25.1	26.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W14	22-Dec-14	24.1	25.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W15	29-Dec-14	23.3	24.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W00	05-Jan-15	22.7	25.7	33	12	4	4	38	1	14	3	37
TR01	W01	12-Jan-15	21.6	27.3	MM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W02	19-Jan-15	20.4	25.9	31	40	4	3	47	1	16	3	33
TR01	W03	26-Jan-15	21.9	30.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W04	02-Feb-15	27	32	29	9	6	4	44	3	9	4	22
TR01	W05	09-Feb-15	27.8	30.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W06	16-Feb-15	28.7	29.4	38	11	6	4	50	2	6	3	23
TR01	W07	23-Feb-15	28.7	25.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W08	02-Mar-15	28.2	24.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W09	09-Mar-15	29.3	28.1	45	6	4	3	41	3	5	1	23
TR01	W10	16-Mar-15	29.5	29.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W11	23-Mar-15	34.9	36.4	42	42	19	5	78	1	12	4	22

NOTES:

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NM = not measured

NTU = Nephelometric Turbidity Units

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 11. ORP (millivolts)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site - Rico Tunnels, Operable Unit OU01

				FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	64	151	93	-428	-296	-305	49	-444	-275
С	W01	22-Sep-14	30.7	44.5	-16	R	24	-259	-346	-277	-38	-257	-243
С	W02	29-Sep-14	29.5	41.3	-17	33	-49	-266	-272	-245	23	-265	-230
С	W03	06-Oct-14	30.2	35.1	NM	46	-26	-218	-237	-225	25	-244	-207
С	W04	13-Oct-14	26.8	35.7	32	54	-20	-192	-162	-191	-58	-226	-182
С	W05	20-Oct-14	29.2	35.9	27	65	45	-148	-51	-90	22	-180	-146
С	W06	27-Oct-14	27.7	43.2	-24	41	36	-160	-40	-60	-86	-203	-100
С	W07	03-Nov-14	28.8	32.0	27	26	34	-108	57	20	-21	-170	45
С	W08	10-Nov-14	27.9	29.8	-10	2	-29	-161	-24	-21	-43	-184	3
С	W09	17-Nov-14	27.9	29.2	26	65	61	-179	-96	-40	19	-207	-126
С	W10	24-Nov-14	27.0	29.2	21	51	29	-129	-84	20	36	-205	106
С	W11	01-Dec-14	25.9	28.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W12	08-Dec-14	25.5	27.8	-26	16	19	-215	-116	-33	-49	-235	-138
С	W13	15-Dec-14	25.1	26.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W14	22-Dec-14	24.1	25.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W15	29-Dec-14	23.3	24.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W00	05-Jan-15	22.7	25.7	5	45	27	-230	-152	33	59	-256	-177
TR01	W01	12-Jan-15	21.6	27.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W02	19-Jan-15	20.4	25.9	1	50	-27	-225	-118	81	3	-232	-148
TR01	W03	26-Jan-15	21.9	30.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W04	02-Feb-15	27	32	-28	51	6	-232	-132	43	-17	-250	-158
TR01	W05	09-Feb-15	27.8	30.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W06	16-Feb-15	28.7	29.4	-25	37	-26	-227	-138	26	15	-221	-151
TR01	W07	23-Feb-15	28.7	25.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W08	02-Mar-15	28.2	24.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W09	09-Mar-15	29.3	28.1	-4	86	78	-231	-184	62	96	-225	-185
TR01	W10	16-Mar-15	29.5	29.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W11	23-Mar-15	34.9	36.4	33	77	81	-131	-112	51	73	-132	-108

NOTES:

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

mV = millivolts

NM = not measured

ORP = Oxidation Reduction Potential

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 12. Dissolved Oxygen (mg/L)

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site - Rico Tunnels, Operable Unit OU01

		ic Sile - Nico Te		FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	5.6	5.2	6.8	0.2	0.4	0.4	5.2	0.1	0.9
С	W01	22-Sep-14	30.7	44.5	6.6	2.1	6.1	0.9	0.1	1.7	3.5	1.8	3.1
С	W02	29-Sep-14	29.5	41.3	5.9	5.7	7	1.8	1.9	2.4	6.1	0.7	3.2
С	W03	06-Oct-14	30.2	35.1	NM	6.1	6.7	2.6	1.8	1.2	5.9	1.4	3
С	W04	13-Oct-14	26.8	35.7	6.1	6.4	7.2	3.1	3.7	1.8	5.9	1.5	2.9
С	W05	20-Oct-14	29.2	35.9	3.9	6.3	6	3.1	5.4	2.5	6.1	2.1	3.4
С	W06	27-Oct-14	27.7	43.2	6	6.2	6.1	3	6.2	2.3	6	2.5	4.3
С	W07	03-Nov-14	28.8	32.0	ns	6.4	7.3	3.4	6	3.7	6.7	3.1	5.1
С	W08	10-Nov-14	27.9	29.8	6.1	6.2	7	3.6	5.6	2.5	6	1.9	2.5
С	W09	17-Nov-14	27.9	29.2	5.5	6.2	7.3	0.3	5.2	0.2	5.6	0.5	2.8
С	W10	24-Nov-14	27.0	29.2	6	6.1	7.7	1.7	5.6	1.1	5.7	0.4	3.7
С	W11	01-Dec-14	25.9	28.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W12	08-Dec-14	25.5	27.8	5.7	6.2	7	1.7	6.1	2.6	5.9	1.8	3.6
С	W13	15-Dec-14	25.1	26.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W14	22-Dec-14	24.1	25.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W15	29-Dec-14	23.3	24.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W00	05-Jan-15	22.7	25.7	5.6	5.9	6.9	0.6	5.8	0.7	5.9	0.3	2.6
TR01	W01	12-Jan-15	21.6	27.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W02	19-Jan-15	20.4	25.9	5	6.5	6.9	0.4	5.9	0.8	5.6	0.3	2.5
TR01	W03	26-Jan-15	21.9	30.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W04	02-Feb-15	27.0	32.0	5.3	5.9	7	0.5	5.7	1.8	5.7	0.3	2.2
TR01	W05	09-Feb-15	27.8	30.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W06	16-Feb-15	28.7	29.4	5.3	5.9	7.4	0.5	6.1	2.6	6.7	0.6	2.6
TR01	W07	23-Feb-15	28.7	25.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W08	02-Mar-15	28.2	24.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W09	09-Mar-15	29.3	28.1	5.5	5.7	6.8	0.7	6.2	1.3	5.6	0.4	2.9
TR01	W10	16-Mar-15	29.5	29.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W11	23-Mar-15	34.9	36.4	5.5	5.9	6.5	0.7	5.3	1.4	5.5	0.2	2.4

NOTES:

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

mg/L = milligram per liter

NM = not measured

OU = operable unit

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 13. Total Dissolved Sulfide (mg/L)

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site - Rico Tunnels, Operable Unit OU01

			FLOW H ¹	FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	R	R	R	R	R	R	R	R	R
С	W01	22-Sep-14	30.7	44.5	0	0	0	1.87	0.98	1.05	0.02	1.8	2.66
С	W02	29-Sep-14	29.5	41.3	NM	0.12	0.25	3.03	3.13	2.2	0.11	7.99	1.43
С	W03	06-Oct-14	30.2	35.1	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W04	13-Oct-14	26.8	35.7	0	0.02	0.06	51.46	4.9	2.5	0.07	R	3.67
С	W05	20-Oct-14	29.2	35.9	0.11	0.03	0.11	20.82	0.61	0.51	0.24	114.7	1.37
С	W06	27-Oct-14	27.7	43.2	0	1.77	0.56	69.24	0.05	0.09	1.88	R	3.07
С	W07	03-Nov-14	28.8	32.0	0.02	0.36	1.19	54.32	1.16	0.47	0.34	61.11	0.53
С	W08	10-Nov-14	27.9	29.8	NM	NM	NM	NM	NM	NM	0.14	434.4	0.48
С	W09	17-Nov-14	27.9	29.2	0	0.63	0.67	99.72	0.89	0.22	0.19	98.46	0.97
С	W10	24-Nov-14	27.0	29.2	0	0.39	0.88	R	1.75	0.19	0.1	4.1	3.27
С	W11	01-Dec-14	25.9	28.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W12	08-Dec-14	25.5	27.8	0	0.01	1.1	R	1.46	0.06	0	62.93	3.2
С	W13	15-Dec-14	25.1	26.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W14	22-Dec-14	24.1	25.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W15	29-Dec-14	23.3	24.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W00	05-Jan-15	22.7	25.7	0	0.32	0.04	20	0.51	0.1	0.17	5.9	0.17
TR01	W01	12-Jan-15	21.6	27.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W02	19-Jan-15	20.4	25.9	0	0.07	0.11	31.25	0.42	0.11	0.33	38	1.05
TR01	W03	26-Jan-15	21.9	30.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W04	02-Feb-15	27	32	0	0.13	0.06	30.75	1.29	0.02	0.19	31.25	1.7
TR01	W05	09-Feb-15	27.8	30.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W06	16-Feb-15	28.7	29.4	0	0.13	0.16	6.19	0.58	0.17	0.11	9.25	0.51
TR01	W07	23-Feb-15	28.7	25.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W08	02-Mar-15	28.2	24.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W09	09-Mar-15	29.3	28.1	0	0.01	0.03	4.5	0.3	0.03	0.06	7.65	0.79
TR01	W10	16-Mar-15	29.5	29.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W11	23-Mar-15	34.9	36.4	0.12	0.05	0	24.25	5.81	0.09	0.18	33.25	5.8

NOTES:

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NM = not measured

mg/L = milligram per liter

OU = operable unit

R = rejected

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

²The Aeration Cascade in the VWTT was bypassed on different occassions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 14. Temperature (degrees Celsius)

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

				FLOW V ^{1,2}									
Phase	Week	Week of	(gpm)	(gpm)	FDB	SB1EFF	SFWEFF	HSSFWMP11	AC1EFF	RDEFF	SB2EFF	BTEFF	AC2EFF
С	W00	15-Sep-14	25.8	33.8	18.8	18.1	18.8	14.7	16.2	12.9	18.6	18.8	16.4
С	W01	22-Sep-14	30.7	44.5	20.1	19.1	19.3	17.9	19.1	17.2	19.2	18.3	18
C	W02	29-Sep-14	29.5	41.3	16.8	15.5	16.4	14.4	13.2	12.1	15.3	13.5	13.2
С	W03	06-Oct-14	30.2	35.1	NM	15.9	14	13.2	13.3	12.5	15.5	15.3	15.3
С	W04	13-Oct-14	26.8	35.7	18.7	17.4	18.3	15.5	15.5	18	17.5	17.5	19.4
C	W05	20-Oct-14	29.2	35.9	19.6	17.7	18.2	17.1	15.3	15.2	18	18.3	17.3
С	W06	27-Oct-14	27.7	43.2	18.8	17.7	17.5	15.3	15.4	12.1	18.3	17.3	17.5
С	W07	03-Nov-14	28.8	32.0	19.1	17.7	18.1	14.1	14.8	12.4	16.5	16.5	15.7
С	W08	10-Nov-14	27.9	29.8	15.7	15.9	15.7	13.3	13.1	11.3	15.1	14.7	14.9
С	W09	17-Nov-14	27.9	29.2	18.7	14.9	12.1	11.7	10.5	9.8	16.8	14.7	14.4
С	W10	24-Nov-14	27.0	29.2	18.1	16.3	12.9	5.7	8.4	9.1	15.6	15.1	14.1
С	W11	01-Dec-14	25.9	28.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W12	08-Dec-14	25.5	27.8	17.6	14.4	13	12.7	9.6	10.4	15.2	14.7	15.1
С	W13	15-Dec-14	25.1	26.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W14	22-Dec-14	24.1	25.4	NM	NM	NM	NM	NM	NM	NM	NM	NM
С	W15	29-Dec-14	23.3	24.5	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W00	05-Jan-15	22.7	25.7	19.2	16.1	15.5	12.1	10.9	8.9	16.7	15	13.6
TR01	W01	12-Jan-15	21.6	27.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W02	19-Jan-15	20.4	25.9	18.9	14.5	13.2	10.6	9.2	7.9	15.1	14.9	14.4
TR01	W03	26-Jan-15	21.9	30.8	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W04	02-Feb-15	27.0	32.0	19.2	16.4	16.2	12.5	11.4	9.1	16.3	15.9	15.4
TR01	W05	09-Feb-15	27.8	30.3	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W06	16-Feb-15	28.7	29.4	19.2	15.9	16	11.1	10	8.3	14.7	14.4	13.8
TR01	W07	23-Feb-15	28.7	25.2	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W08	02-Mar-15	28.2	24.9	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W09	09-Mar-15	29.3	28.1	19.3	16.9	16.7	13.3	12.2	10.5	15.6	14.9	14
TR01	W10	16-Mar-15	29.5	29.7	NM	NM	NM	NM	NM	NM	NM	NM	NM
TR01	W11	23-Mar-15	34.9	36.4	18.6	16.8	16.1	14.1	13.2	12.1	16.2	15.8	15.1

NOTES:

Values presented for physical and chemical parameters are from field measurements obtained during sampling events.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

DEG C = degrees celsius

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

Flow H = Horizontal Treatment Train average flow rate

Flow V = Vertical Treatment Train average flow rate

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NM = not measured OU = operable unit

OU = operable unit

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

VWTT = Vertical Wetland Treatment Train

¹ The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

² The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The Aeration Cascade Effluent flow rate was used in the weekly flow calculations in monthly reports for the VWTT prior to DEC 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 15. Mass Removal
Horizontal and Vertical Wetland Treatment Trains
St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study
Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Phase	Wook	Week of	Analyte Name	FDB (µg/L)	RDEFF (µg/L)	H Δ CONC (μg/L)	H FLOW (gpm)	H FLOW TOTAL (gallons)	H REMOVAL EFFICIENCY (%)	H MASS REMOVAL RATE (g/day)	AC2EFF (µg/L)	V Δ CONC (μg/L)	V FLOW (gpm)	V FLOW TOTAL (gallons)	V REMOVAL EFFICIENCY (%)	V MASS REMOVAL RATE (g/day)
C	Week W00	15-Sep-14	Cadmium, Dissolved	19.6	<0.5	19.6	25.8	259,600	100	2.8	(μg/L) <0.5	19.6	33.8	340200	100	3.6
C	W01	22-Sep-14	Cadmium, Dissolved	20.2	<0.5	20.2	30.7	309,600	100	3.4	<0.5	20.2	44.5	448200	100	4.9
C	W02	29-Sep-14	Cadmium, Dissolved	22.5	<0.5	22.5	29.5	297,200	100	3.6	<0.5	22.5	41.3	416100	100	5.1
	W03	06-Oct-14	Cadmium, Dissolved	22.3	<0.5	22.3	30.2	304,500	100	3.7	<0.5	22.3	35.1	353800	100	4.3
C	W04	13-Oct-14	Cadmium, Dissolved	23	<0.5	23	26.8	270,000	100	3.4	<0.5	23	35.7	359700	100	4.5
C	W05	20-Oct-14	Cadmium, Dissolved	23.4	<0.5	23.4	29.2	294,600	100	3.7	<0.5	23.4	35.9	361600	100	4.6
С	W06	27-Oct-14	Cadmium, Dissolved	22.7	<0.5	22.7	27.7	278,800	100	3.4	<0.5	22.7	43.2	435500	100	5.3
С	W07	03-Nov-14	Cadmium, Dissolved	20.4	<0.5	20.4	28.8	290,300	100	3.2	<0.5	20.4	32	322600	100	3.6
С	W08	10-Nov-14	Cadmium, Dissolved	22.6	<0.5	22.6	27.9	280,900	100	3.4	<0.5	22.6	29.8	300300	100	3.7
С	W09	17-Nov-14	Cadmium, Dissolved	21.4	<0.5	21.4	27.9	281,100	100	3.3	<0.5	21.4	29.2	294300	100	3.4
С	W10	24-Nov-14	Cadmium, Dissolved	20.2	<0.5	20.2	27.0	271,700	100	3	<0.5	20.2	29.2	294300	100	3.2
С	W11	01-Dec-14	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	Cadmium, Dissolved	21.5	<0.5	21.5	25.5	257,200	100	3	<0.5	21.5	27.8	279900	100	3.3
C	W13	15-Dec-14	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	Cadmium, Dissolved	19.1	<0.5	19.1	22.7	228,700	100	2.4	<0.5	19.1	25.7	259200	100	2.7
TR01	W01	12-Jan-15	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	Cadmium, Dissolved	18.6	<0.5	18.6	20.4	206,100	100	2.1	<0.5	18.6	25.9	261400	100	2.6
TR01	W03	26-Jan-15	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	Cadmium, Dissolved	18.3	<0.5	18.3	27.0	272,600	100	2.7	<0.5	18.3	32	322200	100	3.2
TR01	W05	09-Feb-15	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	Cadmium, Dissolved	19.4	<0.5	19.4	28.6	288,400	100	3	<0.5	19.4	29.3	295600	100	3.1
TR01	W07	23-Feb-15	Cadmium, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	Cadmium, Dissolved	NS	NS 10.5	NS 40.7	NS	NS	NS 100	NS	NS 10.5	NS 10.7	NS 00.4	NS	NS 100	NS
TR01	W09	09-Mar-15	Cadmium, Dissolved	18.7	<0.5	18.7	29.3	295,000	100	3	<0.5	18.7	28.1	283300	100	2.9
C	W00 W01	15-Sep-14	Iron	4500 3740	250 170	4250 3570	25.8 30.7	259,600 309,600	94.4 95.5	597.7 597.4	246 218	4254 3522	33.8 44.5	340200 448200	94.5 94.2	783.8 854.3
C	W01	22-Sep-14 29-Sep-14	Iron Iron	4230	129	4101	29.5	297,200	95.5	659.5	210	4020	41.3	416100	94.2	905
C	W02	06-Oct-14	Iron	3940	134	3806	30.2	304,500	96.6	626.5	165	3775	35.1	353800	95.8	722.3
C	W03	13-Oct-14	Iron	3820	144	3676	26.8	270,000	96.2	537	154	3666	35.7	359700	96	713.4
C	W05	20-Oct-14	Iron	5730	326	5404	29.2	294,600	94.3	860.1	143	5587	35.9	361600	97.5	1093.3
C	W06	27-Oct-14	Iron	24100	1340	22760	27.7	278,800	94.4	3436.6	137	23963	43.2	435500	99.4	5642.9
C	W07	03-Nov-14	Iron	4550	297	4253	28.8	290,300	93.5	667.7	153	4397	32	322600	96.6	767
C	W08	10-Nov-14	Iron	5720	99.6	5620.4	27.9	280,900	98.3	854.8	148	5572	29.8	300300	97.4	905.1
С	W09	17-Nov-14	Iron	8800	141	8659	27.9	281,100	98.4	1316.9	260	8540	29.2	294300	97	1359.3
С	W10	24-Nov-14	Iron	5230	<50	5230	27.0	271,700	100	769.7	245	4985	29.2	294300	95.3	793.5
С	W11	01-Dec-14	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	Iron	5710	<50	5710	25.5	257,200	100	793.7	156	5554	27.8	279900	97.3	841.6
С	W13	15-Dec-14	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	Iron	6130	<50	6130	22.7	228,700	100	758.5	131	5999	25.7	259200	97.9	840.4
TR01	W01	12-Jan-15	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 15. Mass Removal
Horizontal and Vertical Wetland Treatment Trains
St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study
Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Phase	Week	Week of	Analyte Name	FDB (µg/L)	RDEFF (µg/L)	H Δ CONC (μg/L)	H FLOW (gpm)	H FLOW TOTAL (gallons)	H REMOVAL EFFICIENCY (%)	H MASS REMOVAL RATE (g/day)	AC2EFF (µg/L)	V Δ CONC (μg/L)	V FLOW (gpm)	V FLOW TOTAL (gallons)	V REMOVAL EFFICIENCY (%)	V MASS REMOVAL RATE (g/day)
TR01	W02	19-Jan-15	Iron	7510	<50	7510	20.4	206,100	100	835.1	109	7401	25.9	261400	98.5	1044.9
TR01	W03	26-Jan-15	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	Iron	7980	<50	7980	27.0	272,600	100	1174.5	162	7818	32	322200	98	1363.7
TR01	W05	09-Feb-15	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	Iron	9530	<50	9530	28.6	288,400	100	1485.7	142	9388	29.3	295600	98.5	1499.4
TR01	W07	23-Feb-15	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	Iron	10400	<50	10400	29.3	295,000	100	1661	138	10262	28.1	283300	98.7	1571.9
С	W00	15-Sep-14	Iron, Dissolved	772	76.2	695.8	25.8	259,600	90.1	97.9	174	598	33.8	340200	77.5	110.2
С	W01	22-Sep-14	Iron, Dissolved	723	<50	723	30.7	309,600	100	121	128	595	44.5	448200	82.3	144.3
С	W02	29-Sep-14	Iron, Dissolved	1320	<50	1320	29.5	297,200	100	212.3	147	1173	41.3	416100	88.9	264.1
С	W03	06-Oct-14	Iron, Dissolved	625	53.3	571.7	30.2	304,500	91.5	94.1	86.2	538.8	35.1	353800	86.2	103.1
С	W04	13-Oct-14	Iron, Dissolved	339	66.1	272.9	26.8	270,000	80.5	39.9	89.4	249.6	35.7	359700	73.6	48.6
С	W05	20-Oct-14	Iron, Dissolved	575	195	380	29.2	294,600	66.1	60.5	106	469	35.9	361600	81.6	91.8
С	W06	27-Oct-14	Iron, Dissolved	1930	847	1083	27.7	278,800	56.1	163.5	113	1817	43.2	435500	94.1	427.9
С	W07	03-Nov-14	Iron, Dissolved	483	148	335	28.8	290,300	69.4	52.6	106	377	32	322600	78.1	65.8
С	W07	03-Nov-14	Iron, Dissolved	2290	79.8	2210.2	27.9	280,900	96.5	336.1	90	2200	29.8	300300	96.1	357.4
С	W09	17-Nov-14	Iron, Dissolved	1140	111	1029	27.9	281,100	90.3	156.5	188	952	29.2	294300	83.5	151.5
С	W10	24-Nov-14	Iron, Dissolved	3480	<50	3480	27.0	271,700	100	512.2	163	3317	29.2	294300	95.3	528
С	W11	01-Dec-14	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	Iron, Dissolved	5510	<50	5510	25.5	257,200	100	765.9	161	5349	27.8	279900	97.1	810.6
С	W13	15-Dec-14	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	Iron, Dissolved	1060	<50	1060	22.7	228,700	100	131.2	148	912	25.7	259200	86	127.8
TR01	W01	12-Jan-15	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	Iron, Dissolved	2050	<50	2050	20.4	206,100	100	228	95.6	1954.4	25.9	261400	95.3	275.9
TR01	W03	26-Jan-15	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	Iron, Dissolved	2260	<50	2260	27.0	272,600	100	332.6	148	2112	32	322200	93.5	368.4
TR01	W05	09-Feb-15	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	Iron, Dissolved	2580	<50	2580	28.6	288,400	100	402.2	124	2456	29.3	295600	95.2	392.3
TR01	W07	23-Feb-15	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	Iron, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	Iron, Dissolved	1600	<50	1600	29.3	295,000	100	255.5	118	1482	28.1	283300	92.6	227
С	W00	15-Sep-14	Manganese, Dissolved	2080	1760	320	25.8	259,600	15.4	45	1700	380	33.8	340200	18.3	70
С	W01	22-Sep-14	Manganese, Dissolved	2160 J	1620	540	30.7	309,600	25	90.4	1970	190	44.5	448200	8.8	46.1
С	W02	29-Sep-14	Manganese, Dissolved	2200	1500	700	29.5	297,200	31.8	112.6	2110	90	41.3	416100	4.1	20.3
С	W03	06-Oct-14	Manganese, Dissolved	2260	1750 J	510	30.2	304,500	22.6	84	2160	100	35.1	353800	4.4	19.1
С	W04	13-Oct-14	Manganese, Dissolved	2310 B	1970 B	340	26.8	270,000	14.7	49.7	2040 B	270	35.7	359700	11.7	52.5
С	W05	20-Oct-14	Manganese, Dissolved	2270	2030	240	29.2	294,600	10.6	38.2	1820	450	35.9	361600	19.8	88.1
С	W06	27-Oct-14	Manganese, Dissolved	2220	1650 J	570	27.7	278,800	25.7	86.1	1520	700	43.2	435500	31.5	164.8
С	W07	03-Nov-14	Manganese, Dissolved	2250	594	1656	28.8	290,300	73.6	260	1750 J	500	32	322600	22.2	87.2
С	W08	10-Nov-14	Manganese, Dissolved	2400	293	2107	27.9	280,900	87.8	320.4	1750	650	29.8	300300	27.1	105.6
С	W09	17-Nov-14	Manganese, Dissolved	2260	396	1864	27.9	281,100	82.5	283.5	1680	580	29.2	294300	25.7	92.3
С	W10	24-Nov-14	Manganese, Dissolved	2180	106	2074	27.0	271,700	95.1	305.2	1340	840	29.2	294300	38.5	133.7
С	W11	01-Dec-14	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	Manganese, Dissolved	2200	232	1968	25.5	257,200	89.5	273.6	571	1629	27.8	279900	74	246.9
С	W13	15-Dec-14	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 15. Mass Removal
Horizontal and Vertical Wetland Treatment Trains
St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study
Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

				FDB	RDEFF	H Δ CONC	H FLOW	H FLOW TOTAL	H REMOVAL EFFICIENCY	H MASS REMOVAL RATE	AC2EFF	V Δ CONC	V FLOW	V FLOW TOTAL	V REMOVAL EFFICIENCY	V MASS REMOVAL RATE
Phase	Week	Week of	Analyte Name	(µg/L)	(µg/L)	(µg/L)	(gpm)	(gallons)	(%)	(g/day)	(µg/L)	(µg/L)	(gpm)	(gallons)	(%)	(g/day)
TR01	W00	05-Jan-15	Manganese, Dissolved	2150	141	2009	22.7	228,700	93.4	248.6	520	1630	25.7	259200	75.8	228.3
TR01	W01	12-Jan-15	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	Manganese, Dissolved	2070	190	1880	20.4	206,100	90.8	209.1	618	1452	25.9	261400	70.1	205
TR01	W03	26-Jan-15	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	Manganese, Dissolved	2070	654	1416	27.0	272,600	68.4	208.4	1270	800	32	322200	38.6	139.5
TR01	W05	09-Feb-15	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	Manganese, Dissolved	2100	721	1379	28.6	288,400	65.7	215	521	1579	29.3	295600	75.2	252.2
TR01	W07	23-Feb-15	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	Manganese, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	Manganese, Dissolved	2090	641	1449	29.3	295,000	69.3	231.4	500	1590	28.1	283300	76.1	243.5
С	W00	15-Sep-14	Zinc, Dissolved	3500	62.5	3437.5	25.8	259,600	98.2	483.4	148	3352	33.8	340200	95.8	617.6
С	W01	22-Sep-14	Zinc, Dissolved	3800 J	30	3770	30.7	309,600	99.2	630.9	<10	3800	44.5	448200	100	921.8
С	W02	29-Sep-14	Zinc, Dissolved	4000	<10	4000	29.5	297,200	100	643.2	279	3721	41.3	416100	93	837.7
С	W03	06-Oct-14	Zinc, Dissolved	3970	102	3868	30.2	304,500	97.4	636.7	<10	3970	35.1	353800	100	759.6
С	W04	13-Oct-14	Zinc, Dissolved	4000	53	3947	26.8	270,000	98.7	576.6	59.4	3940.6	35.7	359700	98.5	766.8
С	W05	20-Oct-14	Zinc, Dissolved	4160	69.3	4090.7	29.2	294,600	98.3	651.1	65.7	4094.3	35.9	361600	98.4	801.2
С	W06	27-Oct-14	Zinc, Dissolved	4120	47.9	4072.1	27.7	278,800	98.8	614.9	46.9	4073.1	43.2	435500	98.9	959.1
С	W07	03-Nov-14	Zinc, Dissolved	3790	54	3736	28.8	290,300	98.6	586.5	91.7	3698.3	32	322600	97.6	645.1
С	W08	10-Nov-14	Zinc, Dissolved	4230	<10	4230	27.9	280,900	100	643.3	49.4	4180.6	29.8	300300	98.8	679.1
С	W09	17-Nov-14	Zinc, Dissolved	3770	23.5	3746.5	27.9	281,100	99.4	569.8	48.8	3721.2	29.2	294300	98.7	592.3
С	W10	24-Nov-14	Zinc, Dissolved	3760	159	3601	27.0	271,700	95.8	530	54.5	3705.5	29.2	294300	98.6	589.8
С	W11	01-Dec-14	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W12	08-Dec-14	Zinc, Dissolved	3900	106	3794	25.5	257200	97.3	527.4	368	3532	27.8	279900	90.6	535.2
С	W13	15-Dec-14	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W14	22-Dec-14	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
С	W15	29-Dec-14	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W00	05-Jan-15	Zinc, Dissolved	3470	38.3	3431.7	22.7	228700	98.9	424.6	26.1	3443.9	25.7	259200	99.2	482.5
TR01	W01	12-Jan-15	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W02	19-Jan-15	Zinc, Dissolved	3610	42.7	3567.3	20.4	206100	98.8	396.7	25.3	3584.7	25.9	261400	99.3	506.1
TR01	W03	26-Jan-15	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W04	02-Feb-15	Zinc, Dissolved	3520	52.9	3467.1	27	272600	98.5	510.3	63.7	3456.3	32	322200	98.2	602.9
TR01	W05	09-Feb-15	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W06	16-Feb-15	Zinc, Dissolved	3740	48.5	3691.5	28.6	288400	98.7	575.5	38.4	3701.6	29.3	295600	99	591.2
TR01	W07	23-Feb-15	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W08	02-Mar-15	Zinc, Dissolved	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TR01	W09	09-Mar-15	Zinc, Dissolved	3290	57.1	3232.9	29.3	295000	98.3	516.3	16.7	3273.3	28.1	283300	99.5	501.4

Table 15. Mass Removal

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

				FDB	RDEFF	H A CONC	H FLOW	H FLOW TOTAL	H REMOVAL EFFICIENCY	H MASS REMOVAL RATE	AC2EFF	V Δ CONC	V FLOW	V FLOW TOTAL	V REMOVAL EFFICIENCY	V MASS REMOVAL RATE
Phase	Week	Week of	Analyte Name	(µg/L)	(µg/L)	(µg/L)	(gpm)	(gallons)	(%)	(g/day)	(µg/L)	(µg/L)	(gpm)	(gallons)	(%)	(g/day)

NOTES:

Non-detects are reported as <RL and estimated as zero for calculations and graphing.

% = percent

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

B = Laboratory flag indicating blank contamination

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

g/day = grams per day

gpm = gallons per minute

H = horizontal

 $H \Delta CONC$ = horizontal change in concentration

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

J = Laboratory flag indicating estimated value between the MDL and the laboratory RL.

MDL = method detection limit

NS = not sampled

OU = operable unit

ppm = parts per million

RDEFF = Rock Drain Effluent

RL = reporting limit

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

V = vertical

V Δ CONC = vertical change in concentration

VWTT = Vertical Wetland Treatment Train

W** = Week of Treatability Study Phase

The interpolation method for calculating weekly flow totals for both the horizontal and vertical treatment trains was modified to improve precision.

The Aeration Cascade in the VWTT was bypassed on different occasions between 27 OCT 2014 and 16 NOV 2014. The flow rates for the period 27 OCT 2014 - 16 NOV 2014 (and all other weeks) are now calculated based on the Settling Basin No. 2 influent flow rates to better represent metals mass removal by the VWTT.

Table 16. Hydrogen Sulfide Gas (ppm)

Horizontal and Vertical Wetland Treatment Trains

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

			(Ae	H2S-01 ration Channel I	nlet)	H (Access Road near A	2S-02 Aeration Channe	l-South)				tment Cell)	H2S-05 (Aeration Cascade Inlet)				
Phase	Week	Week of	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum
С	W00	15-Sep-14	0.033	0	1.1	0.018	0	1.5	0.0024	0	0.2	0.000	0	0	0.002	0	0.4
С	W01	22-Sep-14	0.016	0	0.7	0.025	0	1	0.0000	0	0	0.000	0	0	0.003	0	0.4
С	W02	29-Sep-14	0.032	0	1.7	0.003	0	0.5	0.0000	0	0	0.007	0	1.1	0.004	0	0.7
С	W03	06-Oct-14	0.022	0	3	0.002	0	0.4	0.0000	0	0	0.004	0	0.7	0.006	0	0.6
С	W04	13-Oct-14	0.005	0	0.5	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W05	20-Oct-14	0.005	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W06	27-Oct-14	0.008	0	0.6	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W07	03-Nov-14	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W08	10-Nov-14	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W09	17-Nov-14	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W10	24-Nov-14	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W11	01-Dec-14	0.006	0	0.6	0.000	0	0	0.0000	0	0	0.000	0	0	0.002	0	0.4
С	W12	08-Dec-14	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W13	15-Dec-14	0.008	0	0.7	0.000	0	0	0.0000	0	0	0.000	0	0	0.011	0	0.6
С	W14	22-Dec-14	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
С	W15	29-Dec-14	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
TR01	W00	05-Jan-15	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.005	0	0.4
TR01	W01	12-Jan-15	0.007	0	0.7	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
TR01	W02	19-Jan-15	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
TR01	W03	26-Jan-15	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.002	0	0.4
TR01	W04	02-Feb-15	0.000	0	0	0.000	0	0	0.0000	0	0	0.000	0	0	0.002	0	0.4
TR01	W05	09-Feb-15	0.002	0	0.4	0.000	0	0	0.0000	0	0	0.000	0	0	0.000	0	0
TR01	W06	16-Feb-15	0.013	0	0.6	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.030	0	5
TR01	W07	23-Feb-15	0.033	0	0.8	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.012	0	0.4
TR01	W08	02-Mar-15	0.005	0	0.5	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.005	0	0.4
TR01	W09	09-Mar-15	0.000	0	0	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.000	0	0
TR01	W10	16-Mar-15	0.000	0	0	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.000	0	0
TR01	W11	23-Mar-15	0.002	0	0.4	0.000	0	0	NA ¹	NA ¹	NA ¹	0.000	0	0	0.000	0	0

NOTES:

¹H2S-03 Sensor was removed due to failure during calibration on 19 FEB 2015. It was reinstalled on 27 MAR 2015 after repairs were completed.

AC1EFF = Aeration Channel Effluent/Rock Drain Influent

AC2EFF = Aeration Cascade Effluent

BTEFF = Biotreatment Cell Effluent/Aeration Cascade Influent

C = Colonization

FDB = Flow Diversion Box (Settling Basin No. 1 Influent/Settling Basin No. 2 Influent)

gpm = gallons per minute

HSSFWMP11 = Horizontal Sub Surface Flow Wetland Effluent/Aeration Channel Influent

NA = Not available

OU = operable unit

ppm = parts per million

RDEFF = Rock Drain Effluent

SB1EFF = Settling Basin No. 1 Effluent/Surface Flow Wetland Influent

SB2EFF = Settling Basin No. 2 Effluent/Biotreatment Cell Influent

SFWEFF = Surface Flow Wetland Effluent/Horizontal Sub Surface Flow Wetland Influent

TR** = Test Run

Horizontal Wetland Treatment Train Summary MAR 2015

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

HSSF Wetland Train Report for March 2015

(Analytical data from Feb and Mar, 2015)

Overall Performance

The HSSF wetland continues to remove cadmium and zinc very well, but has removed manganese poorly during this reporting cycle. This is unexpected and the reasons for this are presently unknown.

A number of global parameters were examined throughout the system to try to explain this diminished treatment performance. It is possible that a sudden change occurred after January 2015 that might explain the subsequent decrease in manganese removal.

Specific Electric Conductivity (SEC) has been trending upward since January 2015 (Figure 1). Earlier in the year, there was a pattern of increasing SEC as mine water travelled through the system. However, a system reset in mid-February completely removed this pattern and it now appears that SEC does not change as water flows through the HWTT system. The meaning of these patterns, or apparent lack thereof, is uncertain.

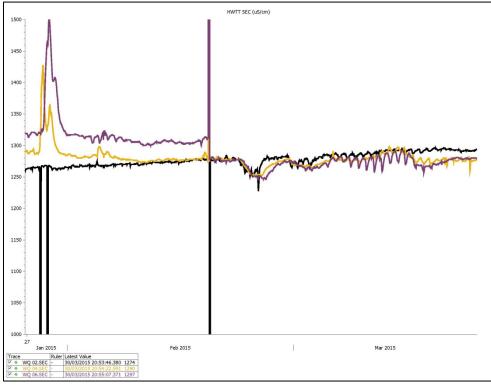


Figure 1. Changes in SEC from January to March 2015.
Legend: black line is Inlet, orange line is HSSF wetland effluent, and purple line is rock drain effluent.

Water pH has shown consistent patterns since the beginning of the year (Figure 2). Mine water pH (feed) has generally varied between 6.5 and 6.8 from January to March 2015. Water pH decreases slightly (<0.05 pH units) in the HSSF wetland, but it increases markedly (0.3 pH units) thereafter. These trends have been consistent throughout the year and cannot account for the sudden decrease in manganese removal rates.

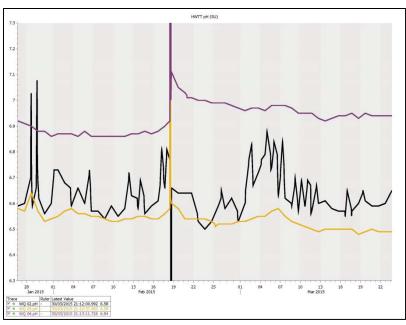


Figure 2. Changes in water pH from January to March 2015.
Legend: black line is Inlet, orange line is HSSF wetland effluent, and purple line is rock drain effluent.

Water temperature has been gradually increasing since the beginning of the year (Figure 3). Temperatures have been consistently decreasing as water flows through the HWTT system, with a loss of 3-5 °C from feed to HSSF wetland outlet and a further 2-3 °C to the rock drain (RD) effluent. There was a marked dip in water temperatures in mid-February, which was noted in the previous report. Otherwise, there has been a trend of lower heat loss from the first week of March onwards. None of these trends can account for the sudden decrease in manganese removal rates.

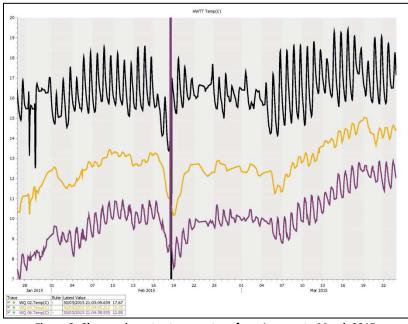


Figure 3. Changes in water temperature from January to March 2015.

Legend: black line is Inlet, orange line is HSSF wetland effluent, and purple line is rock drain effluent.

The factor(s) accounting for the diminished rock drain performance must lie in specific changes in water chemistry or RD function. These will be examined later in this report.

On March 24-25, flow rates were increased to 37 gpm to test system performance under higher flow rates. The results of this change will be noted for each unit process throughout the rest of the report.

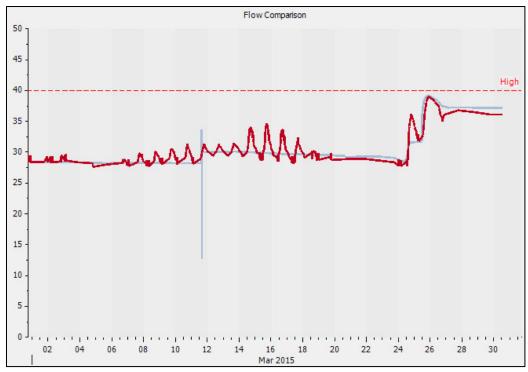


Figure 4. Flow rates in the HWTT system in March 2015.

Flow Diversion Box/Feed Chemistry

As mentioned above, there has been a gradual increase in SEC since the beginning of the year. This is reflected as an increase in the concentration of some constituents in the feed to the treatment system, as summarized in Table 1 below. This table shows a gradual increase in some parameters, such as aluminum, arsenic, copper, iron and lead, and Total Suspended Solids, but not in others like total alkalinity, manganese and sulfate.

Table 1. Change in water quality parameters in 2015. Units in μg/L, except for alkalinity, sulfate and TSS (mg/L).

Constituent	Week 2	Week 4	Week 6	Week 9
Total Alkalinity	-	100	95.2	108
Aluminum	-	726	1,040	1,250
Arsenic	-	<1	1.6	2.1
Copper	-	133	174	200
Iron	-	7,980	9,530	10,400
Lead	-	16.7	22.9	29.5
Manganese	-	2,010	2,120	2,110
Sulfate	670	650	601	613
TSS	16	20	24	29

Although the more abundant alkali minerals (calcium, magnesium) that contribute strongly to SEC were not measured, it appears that the increasing metal concentrations follow the same trend as the increasing SEC noted above.

Settling Basin

Settling Basin No. 1 is performing consistently well, as turbidity levels fluctuated between 5-20 NTU in March (Figure 4). The increased flow rates introduced on March 24-25 were matched with corresponding increased coagulant dosage. These changes resulted in some temporary spiking in turbidity on March 26, otherwise turbidity remained between 5-10 NTU from that day onward.

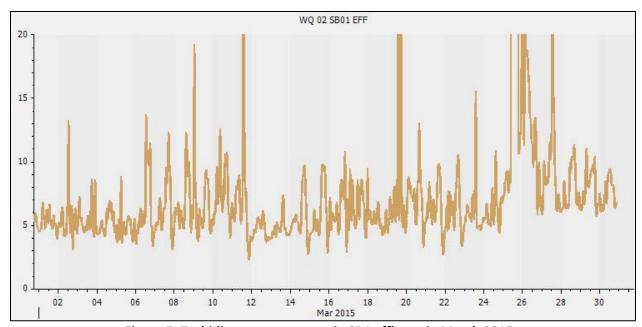


Figure 5. Turbidity measurements in SB1 effluent in March 2015.

Total suspended solids (TSS) decreased from an average of 27 mg/L in the SB1 influent to an average of 11 mg/L in its effluent. Total Iron concentrations decreased from an average of 10.0 mg/L to 1.7 mg/L in the SB effluent.

SF Wetland

Water quality parameters remained largely unchanged in the SF Wetland in March. TSS was unchanged, while Total Iron decreased from an average of 1.6 mg/L to 1.2 mg/L, while aluminum decreased from an average of 1.2 mg/L to 1.0 mg/L.

HSSF Wetland

The HSSF Wetland continues to show good treatment performance in March. The effluent ORP remained between -325 and -375 mV throughout March (Figure 6), reflecting optimal conditions for sulfide generation and metal removal. Other parameters (DO, pH) were also optimal.

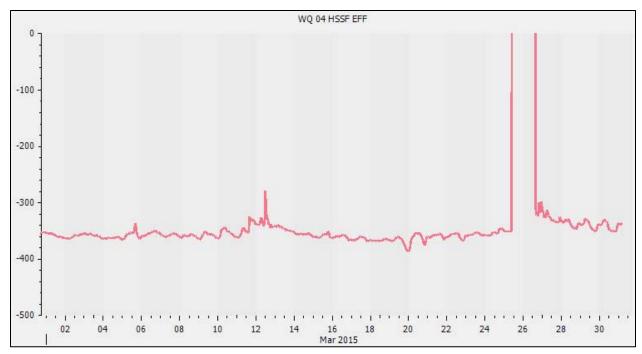


Figure 6. Effluent ORP for HSSF wetland in March 2015.

In the March sample, total cadmium and zinc concentrations decreased in the HSSF wetland from average influent concentrations of 17.5 μ g/L and 3,025 μ g/L to effluent concentrations of 0.89 μ g/L and 434 μ g/L, respectively. The effluent dissolved cadmium and zinc concentrations are also exceedingly low, with zinc levels below 100 μ g/L.

Aluminum is completely removed in the HSSF wetland, with effluent concentrations averaging <50 μ g/L. Copper is also removed effectively, with effluent concentrations averaging 1.9 μ g/L. Lead, which has begun to increase in the feed, is also completely removed (<1 μ g/L).

As noted before, manganese concentrations decreased in the HSSFW by approximately 50%, from average influent concentrations of 2,020 μ g/L to average effluent concentration of 1,023 μ g/L.

Biological Oxygen Demand (BOD) in the HSSFW effluent was low, averaging 4.2 mg/L.

Aeration Channel

Sulfide removal has been consistent in March, with average influent concentrations of 4.4 mg/L decreasing to 1.3 mg/L.

The previously reported increase in colloidal iron and zinc in the aeration channel influent (HSSF effluent) has not been observed consistently in this round of sampling. The February 16 samples showed increased Total Iron and Zinc in the channel effluent, but not the March 12 samples. Additionally, TSS levels were stable and low in both sets of samples. It appears that this was a one-time event that occurred in February only.

BOD levels entering the aeration channel were low (<10 mg/L) and did not change appreciably within the channel.

Rock Drain

Manganese removal was poor in this round of sampling. Since the beginning of February, manganese levels have decreased from average influent concentrations of 939 μ g/L to average effluent concentrations of 739 μ g/L. We have not been able to correlate this decrease in treatment performance with any other water quality parameter. There has been no notable change in influent alkalinity, aluminum, BOD, iron, sulfide or TSS. Water temperature in the RD has been gradually increasing in March, and it is unlikely that the transient dip in temperature between February 16-20 would account for this change.

Previously, manganese concentrations were sampled near the inlet, mid-point and outlet of the RD. We will begin sampling these monitoring ports to see if they can help explain the apparent loss of performance. Additionally, we will conduct some on-site inspections as soon as possible to try to resolve this issue.

Conclusions - HSSF Treatment Train

The HSSF treatment train performance has been mixed in this reporting period. Cadmium and zinc continue to be removed very well, but manganese removal has faltered. Other metals are also removed effectively, despite gradually increasing concentrations.

We will begin to investigate the reasons for the decrease in manganese removal as soon as possible. Separately, we have increased flow rates to 37 gpm and will monitor performance under this increased flow rate. We expect to report on these activities in the next monthly report.

Vertical Wetland Treatment Train Summary MAR 2015

St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Rico Vertical Wetland Treatment Train Report for March 2015

Results from two VWTT sampling events that occurred on February 18 and March 12, 2015 have been received since submittal of the February 2015 monthly report. Results from these two sampling events are discussed below.

Settling Basin No. 2

Settling Basin No. 2 performance was similar to previously reported results. Turbidity decreased from an average influent level of 41.5 NTU to an average effluent level of 5.5 NTU.

Total metals removal was similar to previously reported results. Total arsenic, copper, iron and lead concentrations decreased markedly, with respective average removal efficiencies of 100%, 86%, 85% and 90%. Insignificant removal was observed for cadmium, manganese, nickel and zinc. Total aluminum concentrations decreased by 28%, which is the first time net removal of aluminum has been observed in Settling Basin No. 2. Influent and effluent arsenic results were below laboratory detection limits. TSS concentrations decreased from an average influent concentration of 26.5 mg/L to an average effluent concentration of 4 mg/L. Aluminum, copper, iron and lead concentrations at the Flow Diversion Box have all increased dramatically since December 2014. Aluminum, copper, iron and lead concentrations at the Flow Diversion Box have increased by approximately 4x, 3x, 2x and 8x, respectively, since December 2014.

Biotreatment Cell

Total aluminum concentrations decreased from an average influent concentration of 825 μ g/L to below laboratory detection limits. Total copper concentrations decreased from an average influent concentration of 26 μ g/L to below laboratory detection limits. Total iron concentrations decreased from an average influent concentration of 1,500 μ g/L to an average effluent concentration of 146 μ g/L. Total lead concentrations decreased from an average influent concentration of 2.6 μ g/L to below laboratory detection limits. Total cadmium concentrations decreased from an average influent concentration of 18 μ g/L to below laboratory detection limits. Total zinc concentrations decreased from an average influent concentration of 3,220 μ g/L to an average effluent concentration of 258 μ g/L. Total manganese concentrations decreased from an average influent concentration of 2,070 μ g/L to an average effluent concentration of 506 μ g/L. Influent and effluent total arsenic results were below laboratory detection limits.

Dissolved cadmium concentrations decreased from an average influent concentration of 17 μ g/L to below laboratory detection limits. Dissolved zinc concentrations decreased from an average influent concentration of 3,015 μ g/L to an average effluent concentration of 74 μ g/L. Dissolved manganese concentrations decreased from an average influent concentration of

1,945 μ g/L to an average effluent concentration of 507 μ g/L. Influent and effluent dissolved arsenic results were below laboratory detection limits.

Average effluent BOD, TOC and total sulfide concentrations were 4.6 mg/L, 1.2 mg/L and 4.4 mg/L, respectively. Total alkalinity increased from an average influent concentration of 97.8 mg/L to an average effluent concentration of 106.5 mg/L.

Aeration Cascade

Total and dissolved concentrations of all metals were not significantly different from the average influent concentrations. Average effluent BOD, TOC and total sulfide concentrations were 1.6 mg/L, 1.3 mg/L and 1.4 mg/L, respectively.

Conclusions and Observations – Vertical Wetland Treatment Train

VWTT metals removal performance was within design expectations at design flow rates. The VWTT is currently achieving water quality effluent targets from the 2008 WQA for all metals with a significant safety margin. The Colorado State Reg 34 criteria of 255 μ g/L for manganese is not being achieved, but this was not a design goal of the VWTT.

Manganese removal efficiency returned to approximately 75% as observed during December 2014 and January 2015. As noted in the February 2015 monthly report, manganese removal efficiency had declined to 38% on the February 4 sampling event. No obvious causes for the reversal have been identified. However, the biotreatment cell was not designed to remove manganese and at this time the manganese removal that is occurring is not well understood.

On March 26, the VWTT flow rate was increased to approximately 40 gpm. The flow rate will be kept at 40 gpm for approximately 6 weeks. Following evaluation of data from the 40 gpm test run, the flow rate may be increased to 50 gpm to see if chemical breakthrough can be achieved.

Wetland Plant Update

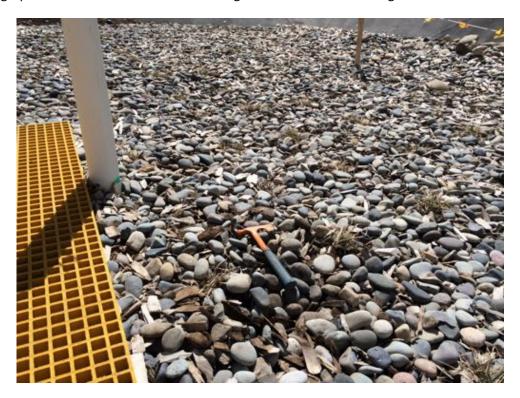
MAR 2015

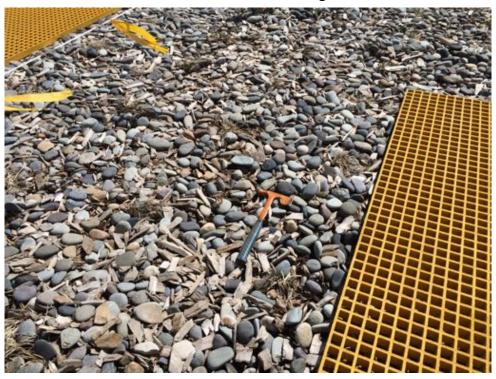
St. Louis Tunnel Discharge Constructed Wetland Demonstration Treatability Study

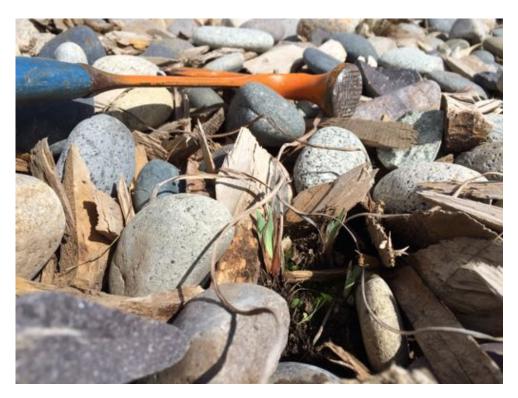
Rico-Argentine Mine Site – Rico Tunnels, Operable Unit OU01

Photograph 1: SF Wetland with Planted Bulrush, Sedge and Rush – Looking South on March 25th, 2015

Photograph 2: SF Wetland with Bulrush, Sedge, and Rush – Looking West on March 25th, 2015


Photograph 3: SF Wetland Looking East on March 25th, 2015

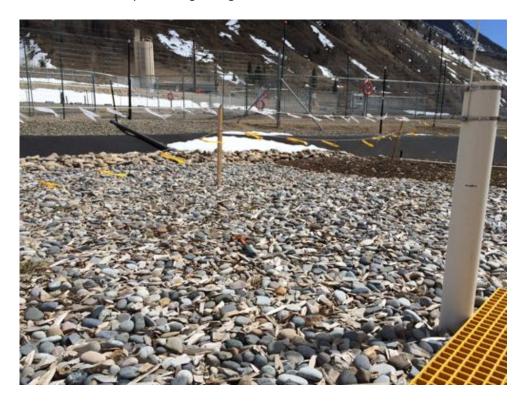

Photograph 4: SF Wetland Looking Northeast on March 25th, 2015


Photograph 5: HSSF Wetland with Establishing Wetland Plants – Looking South on March 25th, 2015

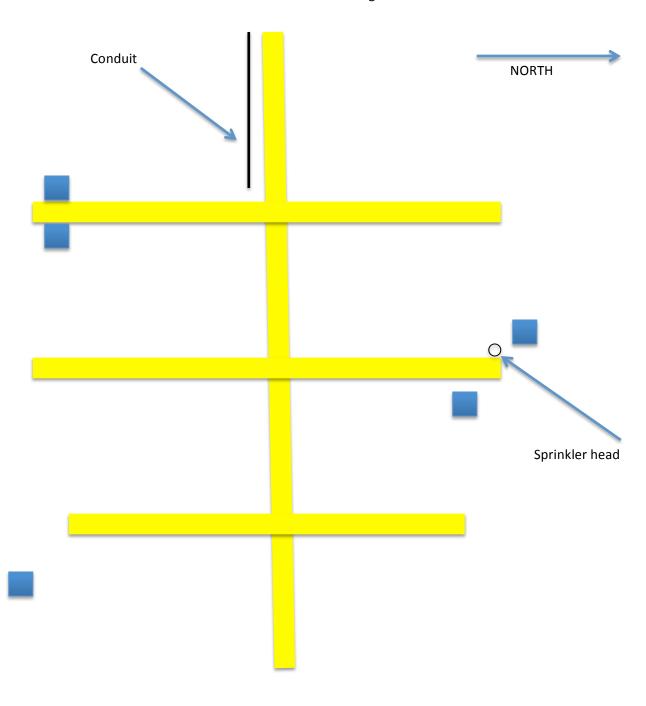
Photograph 6: HSSF Wetland –Sampling Points Comparing Vegetation on either side of southwestern FRP on March 25th, 2015

Photograph 7: HSSF Wetland - Sampling Point Comparing Vegetation on either side of southwestern FRP on March 25th, 2015

Photograph 8: HSSF Wetland – New growth of planted Iris species along the western edge of the HSSF Wetland cell on March 25th, 2015


Photograph 9: HSSF Wetland – Sampling Point in Matrix – Located east of north end of middle FRP on March 25th, 2015

Photograph 10: HSSF Wetland – Sampling Point in Northern Soil Test Strip Reviewing Wetland Vegetation Success on March 25th, 2015


Photograph 11: HSSF Wetland – Close-up photo in Northern Soil Test Strip where planted Iris species are promoting new growth on March 25th, 2015

Photograph 12: HSSF Wetland – Sampling Point Located in southeast quadrant east of southeast FRP on March 25th, 2015

March 2015 Monitoring

HSSE Wetland Plant - Monitoring Plot Locations

= monitoring plot location